Лестер – центр подологии по восстановлению ногтей и стоп в Санкт-Петербурге м.Комендатский проспект

Плазма это в биологии

Что такое плазма в физике

В физике, определение очень простое, плазма — четвертое состояние вещества, которое идет после твердого, жидкого и газообразного. Состояния плазмы достигается тогда, когда газ или газы нагреваются до такой степени, что его электроны теряют связь с ядром. Результирующий квази-газ представляет собой набор из ядер и электронов, свободных друг от друга. Ядра, которые потеряли все электроны считаются ионами, то есть, они электрически заряженые, в значительной степени.

Весь набор , таким образом, становится электропроводным и электрически заряженным. Основной процесс, который происходит в формировании плазмы достаточно прост. При нагревании, энергия закачивается в газ. Это приводит к тому, что газ отделяется от молекул и принимает форму атомов, которые в дальнейшем теряют отрицательно заряженные электроны. Сами атомы сохраняют положительный заряд и, таким образом, считаются положительно заряженными ионами.

Плазма, не может происходить естественно на Земле . Она нуждается в среде контролируемого электромагнитного поля. Звезды, которые существуют в пространстве, являются лучшим примером плазмы. Ученые установили определенные параметры, которые определяют плазму. Эти параметры включают в себя, сближение ионов и электронов, частота и объем итераций, размер, время жизни, плотность, температура и определенное магнитное поле.

В природе плазма существует в звездах или молниях . Искусственную плазму можно увидеть в неоновых вывесках и плазменных дисплеях телевизоров. Так совпало, что Ирвинг Ленгмюра в 1928 году, назвал это явление «плазмой» потому, что она сильно напоминает плазму крови.

Что такое плазма в биологии

Термин плазма в биологии более правильно указан, как плазма крови. У животных, таких как млекопитающие, она составляет около 55% от общего объема крови, который присутствует в организме. Плазма крови имеет беловато-желтый цвет и  является средой в которой находятся все наши клетки крови. Это внеклеточная жидкость, и в отличие от клеток, это не биологически живые единицы, а химическое вещество.

На 90%, плазма это вода. Остальная часть: белок, глюкоза, факторы свертывания крови, минеральные ионы, гормоны и углекислый газ. Метод переливания плазмы был очень полезным в мировых войнах. Плазма может вводиться на тяжелое ранение, чтобы оживить энергетические уровни, повысить исцеление, остановить потерю крови и, наконец, повысить свертываемость крови.

Термин плазма, в биологическом контексте, всегда сопровождается с таким понятием как кровь. Плазма является основным материалом в крови человека, в то время в физике, плазма это крупнейшая материальная субстанция во Вселенной.

Источник: skybox.org.ua

Основные параметры и свойства плазмы

Ко­ли­че­ст­вен­но П. ха­рак­те­ри­зу­ет­ся кон­цен­тра­ция­ми элек­тро­нов $n_e$ и ио­нов $n_i$, их ср. темп-ра­ми (энер­гия­ми) $T_e$ и $T_i$, сте­пе­нью ио­ни­за­ции (дóлей ио­ни­зо­ван­ных ато­мов) $α=n_i/(n_i+n_0)$, где $n_0$ – кон­цен­тра­ция ней­траль­ных ато­мов, ср. за­ря­дом ио­на $Z_{eff}$. Вы­со­кая под­виж­ность час­тиц П. (осо­бен­но элек­тро­нов) обес­пе­чи­ва­ет эк­ра­ни­ро­ва­ние вне­сён­но­го в П. за­ря­да на рас­стоя­ни­ях по­ряд­ка де­ба­евско­го ра­диу­са эк­ра­ни­ро­ва­ния $r_D$ за вре­ме­на по­ряд­ка об­рат­ной плаз­мен­ной элек­трон­ной (лен­гмю­ров­ской) час­то­ты , $ω_{ре}=sqrt{4πn_ee^2/m_e},$ где $e$ и $m_e$ – за­ряд и мас­са элек­тро­на; здесь и ни­же в фор­му­лах ис­поль­зу­ет­ся га­ус­со­ва сис­те­ма еди­ниц (СГС); темп-ру в фи­зи­ке П. и­ня­то из­ме­рять в энер­ге­тич. еди­ни­цах (1 кэВ≈107 К). Про­стран­ст­вен­ный и вре­мен­нoй мас­шта­бы обыч­но ма­лы, по­это­му кон­цен­тра­ции по­ло­жи­тель­ных и от­ри­ца­тель­ных за­ря­дов ока­зы­ва­ют­ся прак­ти­че­ски оди­на­ко­вы­ми $(|Z_{eff}n_i-n_e|/n_e≪1)$; в этом смыс­ле го­во­рят о ква­зи­нейт­раль­но­сти П. Это важ­ней­шее свой­ство П. час­то ис­поль­зу­ют для оп­ре­де­ле­ния П., сле­дуя И. Лен­гмю­ру, впер­вые при­ме­нив­ше­му в 1920-х гг. тер­мин «П.» для обо­зна­че­ния уда­лён­ной от элек­тро­дов ква­зи­нейт­раль­ной об­лас­ти га­зо­во­го раз­ря­да. Обыч­но вре­ме­на су­ще­ст­во­ва­ния и раз­ме­ры П. пре­вы­ша­ют со­от­вет­ст­вен­но и $r_D$, что обес­пе­чи­ва­ет её ква­зи­нейт­раль­ность. Ква­зи­нейт­раль­ность П. не про­ти­во­ре­чит на­ли­чию объ­ём­но­го элек­трич. по­ля в П., на­хо­дя­щей­ся в маг­нит­ном по­ле.

Классификация видов плазмы

Клас­си­фи­ка­ция ви­дов плаз­мы ус­ловна. Ес­ли в сфе­ре ра­диу­са $r_D$ на­хо­дит­ся мно­го за­ря­жен­ных час­тиц ($N≈4πnr_D^3/3≫1, n$ – кон­цент­ра­ция всех ча­стиц плаз­мы), П. на­зы­ва­ет­ся иде­аль­ной плаз­мой; при $N⩽1$ го­во­рят о не­иде­аль­ной плаз­ме (здесь $N$ – па­ра­метр иде­аль­но­сти). В иде­аль­ной П. по­тен­ци­аль­ная энер­гия взаи­мо­дей­ст­вия час­тиц ма­ла по срав­не­нию с их те­п­ло­вой энер­ги­ей.

Вы­со­ко­ио­ни­зо­ван­ную П. с темп-рой $⩾10^2–10^3$ эВ на­зы­ва­ют вы­со­ко­тем­пе­ра­тур­ной, в от­ли­чие от низ­ко­тем­пе­ра­тур­ной плаз­мы с $T_e⩽10–100$ эВ, в ко­то­рой су­ще­ст­вен­ную роль мо­гут иг­рать столк­но­ви­тель­ные и ра­диа­ци­он­ные про­цес­сы. Осо­бой раз­но­вид­но­стью низ­ко­тем­пе­ра­тур­ной П. яв­ля­ет­ся пы­ле­вая плаз­ма, со­дер­жа­щая мак­ро­ско­пи­че­ские (раз­ме­ром от до­лей до со­тен мик­ро­мет­ров) твёр­дые час­тич­ки, не­су­щие боль­шой элек­трич. за­ряд $(Z_{eff}≫1)$. Вы­со­ко­тем­пе­ра­тур­ную П. с вы­со­кой элек­тро­про­вод­но­стью $σ$ так­же на­зы­ва­ют иде­аль­ной, ес­ли мож­но пре­неб­речь дис­си­па­тив­ны­ми про­цес­са­ми.

При сверх­вы­со­ких плот­но­стях энер­гии, воз­ни­каю­щих в ре­зуль­та­те столк­но­ве­ний тя­жё­лых ульт­ра­ре­ля­ти­ви­ст­ских час­тиц, воз­мож­но об­ра­зо­ва­ние кварк-глю­он­ной плаз­мы – ад­рон­ной сре­ды, в ко­то­рой пе­ре­ме­ша­ны цвет­ные за­ря­ды квар­ков и глюо­нов, как в обыч­ной П. пе­ре­ме­ша­ны элек­трич. за­ря­ды. Час­ти­цы крио­ген­ной плаз­мы (с темп-рой в до­ли кель­ви­на) соз­да­ют­ся пу­тём пре­ци­зи­он­ной ио­ни­за­ции хо­лод­ных ато­мов ла­зер­ным пуч­ком, энер­гия кван­тов ко­то­ро­го прак­ти­че­ски рав­на энер­гии ио­ни­за­ции. Для опи­са­ния элек­тро­нов в ме­тал­лах, за­ряд ко­то­рых ском­пен­си­ро­ван за­ря­дом ио­нов кри­стал­лич. ­шёт­ки, а так­же элек­тро­нов и ды­рок в по­лу­про­вод­ни­ках час­то ис­поль­зу­ют тер­мин плаз­ма твёр­дых тел. Совр. фи­зи­ка П. рас­смат­ри­ва­ет так­же ла­зер­ную плаз­му, воз­ни­каю­щую при оп­ти­че­ском про­бое под дей­ст­ви­ем мощ­но­го ла­зер­но­го из­лу­че­ния на ве­ще­ст­во; за­ря­жен­ную П., в ча­ст­но­сти элек­трон­ные и ион­ные пуч­ки, за­ря­жен­ные слои (двой­ной элек­три­че­ский слой) и др.

П. на­зы­ва­ют вы­ро­ж­ден­ной при низ­кой темп-ре $T$ и вы­со­кой кон­цен­тра­ции час­тиц $n$, ко­гда ха­рак­тер­ное рас­стоя­ние $(∝n^{–1/3})$ ме­ж­ду ни­ми ста­но­вит­ся по­ряд­ка дли­ны вол­ны де Брой­ля $(λ≈h/(2mT)^{1/2}$, где $h$ – по­сто­ян­ная План­ка). Ис­кус­ст­вен­но соз­дан­ная П. обыч­но тер­мо­ди­на­ми­че­ски не­рав­но­вес­на. Ло­каль­ное рав­но­ве­сие на­сту­па­ет, толь­ко ес­ли час­ти­цы П. стал­ки­ва­ют­ся ме­ж­ду со­бой. Бы­ст­рее все­го ус­та­нав­ли­ва­ет­ся рав­но­ве­сие внут­ри элек­трон­ной ком­по­нен­ты П., а в ион­ной ком­по­нен­те и ме­ж­ду ио­на­ми и элек­тро­на­ми – со­от­вет­ст­вен­но в $sqrt{∼m_i/m_e}$ и $∼m_i/m_e$ раз мед­лен­нее. В от­ли­чие от га­за, час­то­та столк­но­ве­ний час­тиц П. умень­ша­ет­ся с уве­ли­че­ни­ем энер­гии час­тиц ($∝T^{–3/2}$). По чис­лу ви­дов ио­нов раз­ли­ча­ют од­но- и мно­го­ком­по­нент­ную плаз­му.

Плазма в природе и технике

Счи­та­ет­ся, что бо­лее 99% ба­ри­он­но­го ве­ще­ст­ва во Все­лен­ной пре­бы­ва­ет в со­стоя­нии П. в ви­де звёзд, меж­звёзд­но­го и меж­га­лак­тич. га­за (см. Кос­ми­че­ская плаз­ма). П. маг­ни­то­сфе­ры за­щи­ща­ет Зем­лю от раз­ру­ши­тель­но­го по­то­ка П., ис­пус­кае­мой Солн­цем, – сол­неч­но­го вет­ра. При­сут­ст­вие ио­но­сфер­ной П., от­ра­жаю­щей ра­дио­вол­ны, де­ла­ет воз­мож­ной даль­нюю ра­дио­связь. П. в при­ро­де мож­но на­блю­дать в ви­де ат­мо­сфер­ных раз­ря­дов (мол­ний и ко­рон­ных раз­ря­дов) и по­ляр­ных сия­ний, а так­же в обыч­ном пла­ме­ни. В тех­ни­ке наи­боль­шее рас­про­стра­не­ние по­лу­чи­ла П. га­зо­вых раз­ря­дов, ис­поль­зуе­мых в ла­бо­ра­тор­ных и тех­но­ло­гич. це­лях, в га­зо­раз­ряд­ных ис­точ­ни­ках све­та (напр., лю­ми­нес­цент­ных лам­пах), в ком­му­ти­рую­щих уст­рой­ст­вах, при свар­ке и рез­ке ма­те­риа­лов, в плаз­мен­ных па­не­лях те­ле­ви­зи­он­ных и муль­ти­ме­дий­ных эк­ра­нов. По­то­ки П. при­ме­ня­ют­ся в плаз­мо­тро­нах для об­ра­бот­ки ма­те­риа­лов, в хи­рур­гии, в плаз­мен­ных кос­мич. дви­га­те­лях и маг­ни­то­гид­ро­ди­на­ми­че­ских ге­не­ра­то­рах. В вы­со­ко­тем­пе­ра­тур­ной П. воз­мож­но про­те­ка­ние тер­мо­ядер­ных ре­ак­ций. Для реа­ли­за­ции управ­ляе­мо­го тер­мо­ядер­но­го син­те­за (УТС) в дей­те­рий-три­тие­вой П. не­об­хо­ди­мо вы­пол­не­ние Ло­усо­на кри­те­рия – удер­жа­ние П. с $T⩾10$ кэВ и $n⩾10^{14}$ см–3 в те­че­ние вре­ме­ни $⩾1$ с (в П. др. со­ста­ва эти зна­чения ещё вы­ше). Ти­пич­ные зна­че­ния па­ра­мет­ров разл. ви­дов плаз­мы при­ве­де­ны на ри­сун­ке.

Методы описания плазмы

Сле­дую­щим по ие­рар­хии спо­со­бом опи­са­ния П. яв­ля­ет­ся гид­ро­ди­на­мич. под­ход, опе­ри­рую­щий мо­мен­та­ми функ­ции рас­пре­де­ле­ния (кон­цен­тра­ци­ей, ср. ско­ро­стью, дав­ле­ни­ем, по­то­ка­ми те­п­ла и др.), ус­ред­няе­мой с разл. ве­са­ми по про­стран­ст­ву ско­ро­стей. По­лу­чае­мые та­ким об­ра­зом урав­не­ния мно­го­жид­ко­ст­ной маг­нит­ной гид­ро­ди­на­ми­ки (МГД) при­год­ны для мак­ро­ско­пич. опи­са­ния по­ве­де­ния ком­по­нент П. в маг­нит­ном по­ле. Од­но­жид­ко­ст­ная маг­нит­ная гид­ро­ди­на­ми­ка не раз­ли­ча­ет ком­по­нен­ты П., рас­смат­ри­вая её как еди­ную про­во­дя­щую жид­кость. П. с вы­со­кой элек­тро­про­вод­но­стью $(σrightarrowinfty)$ опи­сы­ва­ет­ся урав­не­ния­ми иде­аль­ной маг­нит­ной гид­ро­ди­на­ми­ки, для ко­то­рой ха­рак­тер­на вмо­ро­жен­ность маг­нит­но­го по­ля в П. При ко­неч­ной про­во­ди­мо­сти маг­нит­ное по­ле про­са­чи­ва­ет­ся сквозь П. с ко­эф. маг­нит­ной диф­фу­зии $c^2/4πσ$ (скин-эф­фект). МГД-опи­са­ние П. ши­ро­ко ис­поль­зу­ет­ся в за­да­чах кос­мич. плаз­мы, УТС и др.

Удержание плазмы

П. со­хра­ня­ет свои свой­ст­ва лишь в от­сут­ст­вие кон­так­тов с бо­лее хо­лод­ны­ми и плот­ны­ми сре­да­ми. Осо­бо ак­ту­аль­на за­да­ча удер­жа­ния вы­со­ко­тем­пе­ра­тур­ной П. в УТС. В от­ли­чие от звёзд­ных объ­ек­тов, в ко­то­рых П. удер­жи­ва­ет­ся си­лой гра­ви­та­ции, в ла­бо­ра­тор­ных тер­мо­ядер­ных ус­та­нов­ках при­ме­ня­ют маг­нит­ное и инер­ци­аль­ное (инер­ци­он­ное) удер­жа­ние П. В сис­те­мах маг­нит­но­го удер­жа­ния маг­нит­ное по­ле игра­ет двоя­кую роль: си­ло­вую (соб­ст­вен­но для удер­жа­ния) и обес­пе­чи­ваю­щую маг­нит­ную тер­мо­изо­ля­цию П. от сте­нок ка­ме­ры. Ис­поль­зу­ют­ся маг­нит­ные ло­вуш­ки разл. ти­пов: от­кры­тые ло­вуш­ки, в ко­то­рых си­ло­вые ли­нии маг­нит­но­го по­ля вы­хо­дят из об­лас­ти удер­жа­ния, и замк­ну­тые (то­рои­даль­ные) ло­вуш­ки – то­ка­ма­ки, стел­ла­ра­то­ры, пин­чи с об­ра­щён­ным по­лем и др. В от­кры­той ло­вуш­ке удер­жа­ние час­тиц П. вдоль си­ло­вой ли­нии обес­пе­чи­ва­ет­ся на­рас­та­ни­ем маг­нит­но­го по­ля от цен­тра к кон­цам ло­вуш­ки; при­ме­ром та­кой ло­вуш­ки слу­жит маг­нит­ное по­ле Зем­ли, удер­жи­ваю­щее час­ти­цы в ра­диа­ци­он­ных поя­сах Зем­ли. Маг­нит­ная кон­фи­гу­ра­ция то­ка­ма­ка соз­да­ёт­ся су­пер­по­зи­ци­ей то­рои­даль­но­го по­ля маг­нит­ных ка­ту­шек (со­ле­нои­дов) и по­лои­даль­но­го по­ля те­ку­ще­го по П. то­ка, что обес­пе­чи­ва­ет на­вив­ку си­ло­вых ли­ний по­ля на маг­нит­ные по­верх­но­сти, вло­жен­ные друг в дру­га. В стел­ла­ра­то­ре та­кая на­вив­ка («вра­ща­тель­ное пре­об­ра­зо­ва­ние») обес­пе­чи­ва­ет­ся ис­клю­чи­тель­но внеш­ни­ми ка­туш­ка­ми спец. фор­мы. Инер­ци­аль­ное удер­жа­ние реа­ли­зу­ет­ся в им­пульс­ных раз­ря­дах, в ко­то­рых П., соз­да­вае­мая в мик­ро­взры­вах под воз­дей­ст­ви­ем ла­зер­но­го из­лу­че­ния или пуч­ков вы­со­ко­энер­гич­ных час­тиц, «жи­вёт» лишь в те­че­ние вре­ме­ни раз­лё­та. Для эф­фек­тив­но­го удер­жа­ния П. её не­об­хо­ди­мо соз­дать и на­греть, за­тем обес­пе­чить её рав­но­ве­сие, ус­той­чи­вость и при­ем­ле­мый уро­вень про­цес­сов пе­ре­но­са.

Создание и нагрев плазмы

Соз­да­ние и на­грев плаз­мы до тер­мо­ядер­ных па­ра­мет­ров – слож­ная тех­нич. за­да­ча, то­гда как низ­ко­тем­пе­ра­тур­ная П. соз­да­ёт­ся и су­ще­ст­ву­ет в разл. га­зо­вых раз­ря­дах от­но­си­тель­но не­боль­шой мощ­но­сти (см. Ге­не­ра­то­ры плаз­мы). В тер­мо­ядер­ных сис­те­мах маг­нит­но­го удер­жа­ния П. соз­да­ёт­ся ли­бо пу­тём про­боя (ин­дук­ци­он­но­го или вы­со­ко­час­тот­но­го) не­по­сред­ст­вен­но в ра­бо­чей ка­ме­ре ус­та­нов­ки, ли­бо (ре­же) впры­ски­ва­ет­ся в ка­ме­ру из внеш­не­го ис­точ­ни­ка. По­сле­дую­щий на­грев плаз­мы обыч­но обес­пе­чи­ва­ет­ся джо­уле­вым те­п­ло­вы­де­ле­ни­ем при про­пус­ка­нии по П. то­ка, адиа­ба­тич. сжа­ти­ем (пинч-эф­фект), ин­жек­ци­ей пуч­ков вы­со­ко­энер­гич­ных час­тиц или элек­тро­маг­нит­ных волн. По­след­ние эф­фек­тив­но по­гло­ща­ют­ся П. лишь на час­то­тах, близ­ких к ре­зо­нанс­ным (элек­трон­ной и ион­ной цик­ло­трон­ных, их сред­не­гео­мет­ри­че­ской – ниж­не­гиб­рид­ной). Та­кие вол­ны ис­поль­зу­ют­ся для не­ин­дук­ци­он­но­го под­дер­жа­ния то­ка в то­ка­ма­ках, что по­тен­ци­аль­но спо­соб­но обес­пе­чить ста­цио­нар­ную ра­бо­ту то­ка­ма­ка-ре­ак­то­ра.

Равновесие плазмы

Ста­цио­нар­ное удер­жа­ние П. тре­бу­ет её рав­но­ве­сия – ло­каль­но­го ба­лан­са сил. По­сколь­ку на гра­ни­це плаз­мен­ной сис­те­мы кон­цен­тра­ция час­тиц и темп-ра П. обыч­но зна­чи­тель­но ни­же, чем в цен­тре, урав­но­ве­сить си­лу га­зо­ки­не­тич. дав­ле­ния П. мож­но толь­ко си­лой Ам­пе­ра: $∇p=[boldsymbol j×boldsymbol B]/c$, где $p$ – дав­ле­ние П., $boldsymbol j$ – плот­ность то­ка в П. Из это­го урав­не­ния рав­но­ве­сия сле­ду­ет, что и си­ло­вые ли­нии маг­нит­но­го по­ля, и ли­нии то­ка ле­жат на по­верх­но­стях рав­но­го дав­ле­ния – изо­ба­рах. Су­ще­ст­вен­но, что рав­но­ве­сие П. воз­мож­но не в ка­ж­дой маг­нит­ной кон­фи­гу­ра­ции. Так, осе­сим­мет­рич­ная рав­но­вес­ная кон­фи­гу­ра­ция долж­на удов­ле­тво­рять не­ли­ней­но­му урав­не­нию эл­лип­тич. ти­па, на­зы­вае­мо­му урав­не­ни­ем Шаф­ра­но­ва – Грэ­да, ана­лог ко­то­ро­го для про­из­воль­ных трёх­мер­ных сис­тем не­из­вес­тен.

Устойчивость плазмы

Для дли­тель­но­го удер­жа­ния П. не­дос­та­точ­но обес­пе­чить ста­цио­нар­ный ба­ланс сил. Не­об­хо­ди­мо, что­бы П. бы­ла ус­той­чи­ва, т. е. что­бы ма­лые от­кло­не­ния от по­ло­же­ния рав­но­ве­сия (флук­туа­ции) не на­рас­та­ли со вре­ме­нем. Ог­ра­ни­чен­ные по ам­пли­ту­де ко­ле­ба­ния но­сят ха­рак­тер волн в плаз­ме, а на­рас­таю­щие во вре­ме­ни пе­рио­дич. или апе­рио­дич. воз­му­ще­ния на­зы­ва­ют­ся не­ус­той­чи­во­стя­ми плаз­мы.

Осо­бен­ность волн в П. за­клю­ча­ет­ся в со­гла­со­ван­ной взаи­мо­свя­зи ко­ле­ба­ний элек­тро­маг­нит­но­го по­ля и ан­самб­ля час­тиц П., из­ме­не­ний во вре­ме­ни и в про­ст­ран­ст­ве её мак­ро­ско­пич. ха­рак­те­ри­стик. Та­кие ко­ле­ба­ния мож­но опи­сать, рас­счи­тав ди­элек­трич. про­ни­цае­мость плаз­мы $ε$ . Спектр собств. ко­ле­ба­ний П. на­хо­дит­ся из ус­ло­вия $ε=0$. К чис­лу спе­ци­фич. ко­ле­ба­ний П. от­но­сят­ся ко­ле­ба­ния объ­ём­ной плот­но­сти за­ря­да – лен­гмю­ров­ские вол­ны, в ко­то­рых век­тор элек­трич. по­ля кол­ли­неа­рен вол­но­во­му век­то­ру. В за­маг­ни­чен­ной П. ди­элек­трич. про­ни­цае­мость яв­ля­ет­ся тен­зо­ром. Для ана­ли­за волн в за­маг­ни­чен­ной П. при­ме­ня­ет­ся и МГД-под­ход, по­зво­ляю­щий опи­сать не толь­ко аль­ве­нов­ские вол­ны, ион­но-зву­ко­вые ко­ле­ба­ния и маг­ни­то­зву­ко­вые вол­ны в од­но­род­ной П., но и их раз­но­вид­но­сти в не­од­но­род­ной П., вклю­чая гео­де­зич. аку­стич. мо­ды, зо­наль­ные те­че­ния и др. Собств. мо­ды ко­ле­ба­ний и те­п­ло­вое дви­же­ние час­тиц П. при­во­дят к дис­пер­сии волн в П., осо­бен­но важ­ной для не­ли­ней­ных волн. Кон­ку­рен­ция дис­пер­сии и не­ли­ней­но­сти де­ла­ет воз­мож­ным су­ще­ст­во­ва­ние уе­ди­нён­ных волн – со­ли­то­нов.

Ис­точ­ни­ком не­ус­той­чи­во­стей П. слу­жит её не­рав­но­вес­ность. В за­ви­си­мо­сти от ви­дов не­рав­но­вес­но­сти раз­ли­ча­ют маг­ни­то­гид­ро­ди­на­ми­че­ские и ки­не­тич. не­ус­той­чи­во­сти. Наи­бо­лее опас­ны маг­ни­то­гид­ро­ди­на­ми­че­ские не­ус­той­чи­во­сти, вы­зы­вае­мые не­од­но­род­но­стью про­стран­ст­вен­но­го рас­пре­де­ле­ния па­ра­мет­ров П. Они при­во­дят к пе­ре­ме­ши­ва­нию сло­ёв П., вплоть до пол­ной де­гра­да­ции удер­жа­ния. Ки­не­тич. не­ус­той­чи­во­сти свя­за­ны с не­рав­но­вес­но­стью функ­ций рас­пре­де­ле­ния час­тиц П. в про­стран­ст­ве ско­ро­стей (от­кло­не­ни­ем от мак­свел­лов­ско­го рас­пре­де­ле­ния). На­рас­та­ние ам­пли­ту­ды ко­ле­ба­ний при не­ус­той­чи­во­сти мо­жет ог­ра­ни­чи­вать­ся не­ли­ней­ны­ми про­цес­са­ми, а ре­зуль­та­том раз­ви­тия не­ус­той­чи­во­стей, как пра­ви­ло, яв­ля­ет­ся тур­бу­лент­ность плаз­мы. Вос­пре­пят­ст­во­вать раз­ви­тию отд. не­ус­той­чи­во­стей мож­но, пра­виль­но фор­ми­руя со­стоя­ния рав­но­ве­сия, а так­же воз­дей­ст­вуя на П. по­сред­ст­вом об­рат­ных свя­зей. Ес­ли рав­но­ве­сие и мак­ро­ско­пич. ус­той­чи­вость П. обес­пе­че­ны, па­ра­мет­ры удер­жи­вае­мой П. оп­ре­де­ля­ют­ся про­цес­са­ми пе­ре­но­са.

Процессы переноса в плазме

Клас­сич. про­цес­сы пе­ре­но­са час­тиц и энер­гии в за­маг­ни­чен­ной П. ана­ло­гич­ны диф­фу­зии и те­п­ло­про­вод­но­сти обыч­ных га­зов с той раз­ни­цей, что в на­прав­ле­нии по­пе­рёк маг­нит­но­го по­ля час­ти­цы при столк­но­ве­ни­ях сме­ща­ют­ся лишь на ве­ли­чи­ну по­ряд­ка лар­мо­ров­ско­го ра­диу­са $ρ_L$. В замк­ну­тых маг­нит­ных сис­те­мах су­щест­ву­ют час­ти­цы, за­пер­тые ме­ж­ду ло­каль­ны­ми мак­си­му­ма­ми маг­нит­но­го по­ля, тра­ек­то­рии ко­то­рых от­кло­ня­ют­ся от маг­нит­ных по­верх­но­стей на ве­ли­чи­ну, су­ще­ст­вен­но пре­вы­шаю­щую $ρ_L$ и со­от­вет­ст­вую­щую лар­мо­ров­ско­му ра­диу­су, рас­счи­ты­вае­мо­му по по­лои­даль­но­му маг­нит­но­му по­лю (т. н. ба­на­но­вые ор­би­ты). Учи­ты­ваю­щая этот факт тео­рия пе­ре­но­сов по­лу­чи­ла назв. «не­оклас­си­че­ской». Пе­ре­но­сы в тур­бу­лент­ной П. мо­гут вы­зы­вать­ся рас­сея­ни­ем час­тиц П. на флук­туа­ци­ях элек­трич. и маг­нит­но­го по­лей. Эф­фек­тив­ные ко­эф. та­ко­го «ано­маль­но­го» пе­ре­но­са, как пра­ви­ло, на по­ряд­ки вы­ше не­оклас­си­че­ских. В тур­бу­лент­ном пе­ре­но­се час­то за­мет­ную роль иг­ра­ют кон­век­тив­ные по­то­ки, что пре­до­пре­де­ля­ет его обыч­но не­диф­фу­зи­он­ный ха­рак­тер.

Диагностика плазмы

Для из­ме­ре­ния зна­че­ний па­ра­мет­ров П. в экс­пе­ри­мен­тах при­ме­ня­ют­ся разл. ди­аг­но­стич. сред­ст­ва, по­зво­ляю­щие пря­мо или кос­вен­но оп­ре­де­лить кон­цен­тра­ции час­тиц ком­по­нент П., тем­пе­ра­ту­ру, ско­ро­сти, на­пря­жён­но­сти по­лей и их из­ме­не­ния во вре­ме­ни и в про­стран­ст­ве. Ис­то­ри­че­ски пер­вы­ми ме­то­да­ми ди­аг­но­сти­ки плаз­мы бы­ли зон­до­вые ме­то­ды с ис­поль­зо­ва­ни­ем зон­дов Лен­гмю­ра разл. мо­ди­фи­ка­ций. Вне­се­ние да­же ми­ниа­тюр­но­го зон­да в П. ис­ка­жа­ет её ха­рак­те­ри­сти­ки, по­это­му совр. ди­аг­но­стич. сред­ст­ва, как пра­ви­ло, бес­кон­такт­ные. Маг­нит­ные дат­чи­ки рас­по­ла­га­ют­ся обыч­но вне П. (поясá Ро­гов­ско­го, зон­ды Мир­но­ва, диа­маг­нит­ные пет­ли, дат­чи­ки гра­ди­ен­та маг­нит­но­го по­то­ка и др.). Весь­ма по­пу­ляр­ны оп­тич. ди­аг­но­сти­ки (вклю­чая рент­ге­нов­скую), ис­поль­зую­щие как соб­ст­вен­ное из­лу­че­ние плаз­мы (пас­сив­ная ди­аг­но­сти­ка), так и про­све­чи­ваю­щие ме­то­ды: ла­зер­ную и СВЧ-ин­тер­фе­ро­мет­рию и ди­фрак­то­мет­рию, ме­то­ды, ос­но­ван­ные на рас­сея­нии све­та (том­со­нов­ском и кол­лек­тив­ном), ме­тод фа­зо­во­го кон­тра­ста и др. Кор­пус­ку­ляр­ная ди­аг­но­сти­ка бы­ва­ет пас­сив­ной (ос­но­ван­ной на ана­ли­зе вы­хо­дя­щих из П. по­то­ков час­тиц) и ак­тив­ной, ис­поль­зую­щей спец. ди­аг­но­стич. пу­чок. Ре­ги­ст­ри­руя ос­лаб­ле­ние и рас­сея­ние пуч­ка, воз­бу­ж­де­ние, ио­ни­за­цию и гео­мет­рию по­сле­дую­щих тра­ек­то­рий его час­тиц и ато­мов пе­ре­за­ряд­ки, мож­но ло­каль­но оп­ре­де­лять кон­цен­тра­цию, темп-ру ио­нов и рас­пре­де­ле­ние элек­трич. по­тен­циа­ла. При­ме­ня­ют­ся и др. ви­ды ак­тив­ных ди­аг­но­стик, в ко­то­рых из­ме­ря­ет­ся от­клик П. на вно­си­мое спе­ци­фич. воз­му­ще­ние. Раз­ви­ва­ет­ся т. н. МГД-спек­тро­ско­пия, ос­но­ван­ная на ре­ги­ст­ра­ции МГД-ко­ле­ба­ний. Осн. про­бле­мы ди­а­г­но­сти­ки П. со­сто­ят имен­но в труд­но­стях на­хо­ж­де­ния ло­каль­ных зна­че­ний па­ра­мет­ров П. и во мно­же­ст­вен­но­сти фак­то­ров, от ко­то­рых за­ви­сят ре­зуль­та­ты из­ме­ре­ний.

Методы моделирования плазмы

Слож­ность по­ве­де­ния П. де­ла­ет ак­ту­аль­ным её ком­пь­ю­тер­ное мо­де­ли­ро­ва­ние. Осн. про­бле­ма за­клю­ча­ет­ся в су­ще­ст­вен­ных раз­ли­чи­ях (на 5–7 по­ряд­ков ве­ли­чи­ны) ха­рак­тер­ных про­стран­ст­вен­ных и вре­мен­ны́х мас­шта­бов про­цес­сов, фор­ми­рую­щих ди­на­ми­ку П., да­же в МГД-при­бли­же­нии и ещё бо́ль­ших в ки­не­ти­ке. По­это­му ком­пь­ю­тер­ные рас­чё­ты ис­поль­зу­ют­ся пре­им. для мо­де­ли­ро­ва­ния отд. про­цес­сов в П. на ос­но­ве уп­ро­щён­ных (ре­ду­ци­ро­ван­ных) урав­не­ний. Так, в пред­по­ло­же­нии сим­мет­рии сис­те­мы на­дёж­но ре­ша­ет­ся за­да­ча дву­мер­но­го рав­но­ве­сия П. и его мед­лен­ной эво­лю­ции; су­ще­ст­ву­ют ко­ды рас­чё­та трёх­мер­но­го рав­но­ве­сия П. в стел­ла­ра­то­рах с маг­нит­ны­ми по­верх­но­стя­ми, то­гда как про­бле­ма рас­чё­та об­ще­го трёх­мер­но­го рав­но­ве­сия П. в маг­нит­ном по­ле по­ка не ре­ше­на. Из­вест­ны дву­мер­ные МГД-ко­ды, опи­сы­ваю­щие ди­на­ми­ку П. и раз­ви­тие не­ко­то­рых не­ус­той­чи­во­стей, то­гда как трёх­мер­ные ди­на­мич. МГД-ко­ды до сих пор име­ют весь­ма ог­ра­ни­чен­ную при­ме­ни­мость. Наи­боль­шее рас­про­стра­не­ние для мо­де­ли­ро­ва­ния тур­бу­лент­ной ди­на­ми­ки за­маг­ни­чен­ной П. по­лу­чи­ли ги­ро­ки­не­тич. ко­ды, не учи­ты­ваю­щие бы­строе цик­ло­трон­ное вра­ще­ние час­тиц; од­на­ко по­ка с их по­мо­щью рас­счи­ты­ва­ет­ся весь­ма ко­рот­кое вре­мя эво­лю­ции П. Пря­мое при­ме­не­ние ме­то­дов мо­ле­ку­ляр­ной ди­на­ми­ки к вы­со­ко­тем­пе­ра­тур­ной П. за­труд­ни­тель­но для сколь­ко-ни­будь зна­чит. чис­ла за­ря­жен­ных час­тиц. Его ана­ло­гом слу­жит ме­тод час­тиц в ячей­ках, об­ра­зуе­мых рас­чёт­ной сет­кой. Час­ти­цы П. объ­е­ди­ня­ют­ся в мак­ро­час­ти­цы, дви­жу­щие­ся в ячей­ках, а зна­че­ния по­лей ме­ня­ют­ся лишь при пе­ре­хо­де от од­ной ячей­ки к дру­гой. Спе­циа­ли­зи­ров. ко­ды ис­поль­зу­ют­ся для рас­чё­та на­гре­ва П., из­лу­че­ния и по­гло­ще­ния волн, ге­не­ра­ции то­ка и пуч­ков час­тиц, рас­чё­та атом­ных и ра­диа­ци­он­ных про­цес­сов, про­ис­хо­дя­щих в П., взаи­мо­дей­ст­вия П. с ма­те­риа­ла­ми и пр.

Направления развития плазменных исследований

Спо­со­бы при­ме­не­ния П. в тех­ни­ке весь­ма мно­го­об­раз­ны, их чис­ло уве­ли­чи­ва­ет­ся год от го­да. В низ­ко­тем­пе­ра­тур­ной П. воз­мож­но про­те­ка­ние ря­да важ­ных хи­мич. ре­ак­ций, за­пре­щён­ных в обыч­ных ус­ло­ви­ях, их изу­че­ни­ем за­ни­ма­ет­ся плаз­мо­хи­мия. Важ­ней­шим на­прав­ле­ни­ем ис­сле­до­ва­ний П. ос­та­ёт­ся УТС. Имен­но раз­вёр­ты­ва­ние ра­бот по УТС в нач. 1950-х гг. в СССР и США по­ло­жи­ло на­ча­ло ши­ро­ко­мас­штаб­ным ис­сле­до­ва­ни­ям по фи­зи­ке П. во всём ми­ре. Дос­ти­же­ния по­след­них лет в ис­сле­до­ва­ни­ях кос­мич. про­стран­ст­ва и на­блю­да­тель­ной ас­тро­но­мии при­ве­ли к вспле­ску ра­бот по плаз­мен­ной ас­т­ро­фи­зи­ке, пер­спек­ти­вы раз­ви­тия ко­то­рой так­же вы­гля­дят весь­ма оп­ти­ми­стич­но.

Источник: bigenc.ru

жидкая фракция крови. От с-ки отличается содержанием фибриногена и способностью свертываться под действием коагулаз. Получают центрифугированием крови, в присутствии коагулянта (напр., гепарин, натрия цитрат). В микробиол. практике применяют для выявления способности бактерий синтезировать фермент коагулазу. Используют коммерческую плазму, полученную плазмаферезом, или готовят ее в лаборатории. Для этого в 1 — 2 мл стерильного 5% р-ра натрия цитрата вливают 10 мл свежевзятой крови кролика, барана, человека, осторожно перемешивают, центрифугируют, верхний слой-плазму отсасывают и хранят в холодильнике.

Плазма — пласма ж. темно-зеленый агат. Толковый словарь Даля

Плазма — плазмы, мн. нет, ж. (греч. plasma — образование). 1. Жидкая составная часть различных органических тканей, преимущ. крови и лимфы (биол.). 2. Темнозеленый халцедон (мин.). Толковый словарь Ушакова

Плазма — -ы; ж. [от греч. plasma — вылепленное, оформленное] 1. Биол. Жидкая часть крови. 2. Физ. Ионизированный под воздействием высокой температуры газ с примерно равной концентрацией…….. Толковый словарь Кузнецова

Плазма — , в физике — ионизированный ГАЗ. Плазму часто называют четвертым агрегатным состоянием ВЕЩЕСТВА, которое возникает при очень высоких температурах, как, например, внутри…….. Научно-технический энциклопедический словарь

Плазма Kpobи — , в биологии — жидкая часть крови, в которой КЛЕТКИ образуют суспензию. Содержит большое количество ионов, органических и неорганических молекул, таких как ИММУНОГЛОБУЛИНЫ,…….. Научно-технический энциклопедический словарь

Зародышевая Плазма — (син. половая плазма) 1) (plasma germinale, LNE; син. гонобласт) — половой зачаток, представляющий собой совокупность гоноцитов; у высокоорганизованных животных и человека возникает…….. Большой медицинский словарь

Зародышевая Плазма — (идиоплазма) — понятие, введенное А. Вейсманом (1892)для обозначения гипотетического вещества — носителя наследственности,заключенного в половых клетках и передающегося…….. Большой энциклопедический словарь

Плазма Крови — (plasma sanguinis; греч. plasma нечто образованное, сформированное) жидкая часть крови, остающаяся после удаления ее форменных элементов. Большой медицинский словарь

Половая Плазма — см. Зародышевая плазма. Большой медицинский словарь

Сократительная Плазма — (истор.) см. Киноплазма. Большой медицинский словарь

Плазма — (от греч. plasma — вылепленное — оформленное), ионизованный газ, вкотором концентрации положительных и отрицательных зарядов равны(квазинейтральность). В состоянии плазмы…….. Большой энциклопедический словарь

Плазма Крови — жидкая часть крови. В плазме крови находятся форменныеэлементы крови (эритроциты, лейкоциты, тромбоциты). Изменения в составеплазмы крови имеют диагностическое значение…….. Большой энциклопедический словарь

Плазма Твердых Тел — условный физический термин, обозначающий свойствасовокупности подвижных заряженных частиц в твердых проводниках (электроновв металлах или электронов и дырок в полупроводниках),…….. Большой энциклопедический словарь

Зародышевая Плазма — зачатковая плазма, материальная субстанция ядер половых клеток, определяющая совокупность наследств, задатков организма. Концепция 3. п. предложена А. Вейсманом (1883—85)…….. Биологический энциклопедический словарь

Плазма — (отгреч. plasma, букв.— вылепленное, оформленное), жидкая или гелеобразная часть биол. структур — крови, лимфы, клеток (цитоплазма) и др. Биологический энциклопедический словарь

Плазма Крови — жидкая часть крови (кровь без её форменных элементов). Коллоидный раствор белков, включающий, в отличие от сыворотки крови, фибриноген. В П. к. находятся форменные элементы…….. Биологический энциклопедический словарь

Плазма Зачаточная — (germ plasm) — обнаруженное в XIX веке биологами (особенно Вейсманом) вещество, которое передается из поколения в поколение через гаметы; из него происходит образование клеток организма. Психологическая энциклопедия

Плазма, Плазма Крови — (blood plasma) — жидкая, прозрачная часть крови соломенного цвета, в которой во взвешенном состоянии находятся клетки крови. Плазма содержит до 91% воды; 6,5-8% белков (около 70 г/л),…….. Психологическая энциклопедия

Заро́дышевая Пла́зма — (син. половая плазма) 1) (plasma germinale, LNE; син. гонобласт) — половой зачаток, представляющий собой совокупность гоноцитов; у высокоорганизованных животных и человека возникает…….. Медицинская энциклопедия

Плазма (plasma), Плазма Крови (blood Plasma) — жидкая, прозрачная часть крови соломенного цвета, в которой во взвешенном состоянии находятся клетки крови. Плазма содержит до 91% воды; 6,5-8% белков (около 70 г/л), около…….. Медицинский словарь

Плазма Зачаточная (germ Plasm) — обнаруженное в XIX веке биологами (особенно Вейсманом) вещество, которое передается из поколения в поколение через гаметы; из него происходит образование клеток организма. Медицинский словарь

Плазма Крови (blood Plasma) — см. Плазма. Медицинский словарь

Плазма Крови — I Пла́зма кро́ви (греч. plasma нечто образованное, сформированное) жидкая часть крови, остающаяся после удаления ее форменных элементов, — см. Кровь. II Пла́зма…….. Медицинская энциклопедия

Полова́я Пла́зма — см. Зародышевая плазма. Медицинская энциклопедия

Сократи́тельная Пла́зма — (истор.) см. Киноплазма. Медицинская энциклопедия

ПЛАЗМА — ПЛАЗМА, -ы, ж. (спец.). 1. Жидкая часть крови. 2. Ионизированный газ с равной концентрацией положительных и отрицательных зарядов. || прил. плазменный, -ая, -ое и плазматический, -ая, -ое (к 1 знач.). Толковый словарь Ожегова

Источник: slovariki.org

Состав плазмы крови

Плазму из крови выделяют с помощью центрифуги-сепаратора. Плазма содержит в себе воду, которая содержит белки, и минеральные и органические соединения.

Белки плазмы:

  1. Альбумины. Низкая молекулярная массой. Составляет 5% от общей массы белков;
  2. α1 – глобулины;
  3. α2 – глобулины;
  4. β – глобулин;
  5. G – глобулин; Крупномолекулярные. Составляют 3% от общей массы белков;
  6. Фибриногены. Глобулярные белки. Составляют 0,4% от общей массы белков.

Питательные вещества плазмы:

  1. Глюкоза;
  2. Липиды;
  3. Гормоны;
  4. Ферменты;
  5. Витамины;
  6. Продукты обмена веществ;
  7. Неорганические вещества.

Неорганические элементы составляют 1% от общего состава плазмы крови. К ним относятся катионы натрия, калия, кальция, магния, и анионы хлорид, фосфат, карбонат. Эти ионы поддерживают нормальное состояние клеток и регулируют кислотно-щелочной баланс.

Группы небелковых веществ, плазмы крови:

1 группа содержит азотосодержащие вещества. В их состав входит 50% азот мочевины, 25% азот аминокислот; остальные 25% составляют пептиды, креатин, креатинин, индикан и билирубин. Высокий уровень азотосодержащих элементов сопроваждают патологию почек и обширные ожоги.

2 группа содержит органические безазотистые вещества. К ним относятся углеводы, липиды, продукты метаболизма, минеральные элементы крови.

Плотность плазма равна 1,025-1,029. рН плазмы – 7.

Свойства плазмы крови

Богатая тромбоцитами плазма применяется в медицине как стимулятор регенерации и заживления тканей организма. Белки, входящие в состав плазмы обеспечивают свертываемость крови, транспортировку питательных элементов. Также функционирует кислотно-основной гемостаз и происходит поддержка агрегатного состояния кровотока.

Альбумины выполняют синтез печени. Также, выполняют питание клеток и тканей, транспортируют желчные вещества, выполняется резерв аминокислот.

Принимают участие:

  • альбумины в доставке лекарственных компонентов.
  • α – глобулины активизируют процесс выработки белков, выполняют транспортировку гормонов, липидов, и микроэлементов.
  • β – глобулины участвуют в транспортировке катионов железа, цинка, фосфолипидов, стероидных гормонов и желчных стеринов.
  • G – глобулины содержат антитела.
  • Фибриноген влияет на свертываемость крови.

Смесь Рингера более адаптивен к крови, поскольку в него, кроме натрия хлорида, входят ионы кальция и калия карбида, и он является одновременно ионическим и изотоническим. Если в смесь Ренгера включается натрий гидрокарбонат, то она, по кислотно-щелочному балансу, считается равной крови.

Смесь Рингера-Локка напоминает состав натуральной плазмы, так кА содержит глюкозу. Смесь предназначается для поддержания сбалансированного давления крови во время кровотечения, обезвоживания и послеоперационного периода.

Функции плазмы

  • Транспортная;
  • Выделительная;
  • Защитная;
  • Гуморальная;
  • Обеспечение солевого баланса;
  • Гомеостатическая;
  • Терморегуляторная;
  • Механическая;
  • Балансировка давления;
  • Связывание экстраваскулярных жидкостей.

Источник: spravochnick.ru

Плазма – это ионизированный газ, содержащий электроны, а так же положительно и отрицательно заряженные ионы. Она является одним из четырех основных агрегатных состояний веществ.

Физическое объяснение плазмы и способы ее получения

Традиционно утверждалось, что существует 3 основных агрегатных состояний веществ. Они могут быть жидкими, твердыми и газообразными. Об этом говорили ученые с самого начала существования известной науки. С развитием технологий и научных наблюдений было установлено четвертое состояние веществ, именуемое плазмой. Обычно она возникает в результате сильного нагрева. Процесс ее образования выглядит следующим образом. Любое твердое вещество при очень сильном нагреве сначала плавится, после чего переходит в газообразное состояние, при продолжении температурного воздействия осуществляется его дальнейшее распадение на свободные атомы. От продолжающегося повышения температуры осуществляется отделение электронов, а также положительно и отрицательно заряженных ионов. В результате получается ионизированный газ, являющийся плазмой.

Впервые о плазме заговорил английский физик сэр Уильям Крикс в 1879 году. Предложенная им концепция активно развивалась и совершенствовалась, что наблюдается и сегодня. Существуют различные предположения, которые указывают на то, что плазма была открыта намного раньше. Об этом можно судить даже по древнему утверждению о существовании четырех стихий: земля, вода, воздух и огонь. Они тесно переплетаются с современным трактованием 4 агрегатных состояний: твердое, жидкое, газообразное и плазменное. В определенных смыслах можно вполне сопоставить плазму и огонь.

Помимо получения плазмы в результате термической обработки вещества, его также можно выделить проводя бомбардировку газа быстрыми заряженными частицами. Для этого проводится облучение радиоактивными веществами. В таких случаях осуществляется выработка низкотемпературной плазмы.

Также была разработана технология получения газоразрядной плазмы. Для этого через газ пропускается электрический ток, вызывающий его ионизацию. Ионизированные частицы переносят ток, что приводит к их дальнейшему разрушению. Получаемая в результате электрического воздействия плазма менее эффективна в плане сохранения жизнедеятельности, чем образованная от термической обработки. Это связано с меньшим нагревом и высокой скоростью охлаждения частиц, так как они постоянно контактируют с другими ионами, не получившими необходимого нагрева.

Более сложный способ ее образования заключается в сильном сжатии вещества. Подобные методы воздействия приводят к сходу атомов со своих орбит. Возникающие в результате отдельные положительно и отрицательно заряженные частицы приобретают определенные свойства, которые могут применяться в различных сферах при обработке материалов.

Свойства плазмы

Главным свойством плазмы является высокая электрическая проводимость, значительно превосходящая прочие агрегатные состояния веществ. При этом суммарный электрический заряд равен нулю. Плазма подвержена влиянию магнитного поля. Под его воздействием она способна концентрировать струю, что позволяет проводить контроль движения газа.

Также для плазмы характерно корректирование взаимодействия. У обычного газа происходит сталкивание частиц по двое, а в случае с плазмой электроны сталкиваются чаще и крупными группами.

Свойства плазмы могут отличаться в зависимости от ее разновидности. По термическим свойствам ее разделяют на 2 вида:
  • Низкотемпературная.
  • Высокотемпературная.

Для низкотемпературной плазмы характерен нагрев менее чем до 1 млн. Кельвинов. Высокотемпературный газ имеет температуру как минимум 1 млн. Кельвинов. Последняя разновидность плазмы принимает участие в термоядерном синтезе.

Проявление плазмы в природе

Считается, что 99% Вселенной представлено плазмой. Любая звезда состоит именно из ионизированного газа. Впервые об этом начали задумываться наблюдая за Солнцем. Исходящий от него ветер является ничем иным, как плазмой.

Наблюдать плазму можно и в ионосфере. Визуально этот эффект можно заметить рассмотрев пример полярного сияния. Оно образовывается в результате облучения азота и кислорода солнечным излучением. Конечно, пример с полярным сиянием не столь удачный, поскольку данное явление можно увидеть только в определенных участках местности, малодоступной для большинства людей. Более частым проявлением природной плазмы, которое встречается везде, является момент удара молнии. Электрический искровой разряд, появляющийся в грозу, это и есть сильно ионизирующий газ.

Раньше считалось, что огонь это тоже разновидность плазмы, но это утверждение в корне неверно. Для плазмы характерна температура от 8000 градусов. Самое мощное пламя даже при обдуве кислородом не может нагреваться выше 4000 градусов.

Отличие плазмы от газов

На первый взгляд может показаться, что плазма и газ это довольно взаимосвязанные агрегатные состояния, которые можно объединить в одно понятие. Все же существует ряд особенностей, позволяющие их разделить. В первую очередь можно отметить электрическую проводимость. У газа она крайне мала. Ярким примером будет воздух. Сам по себе он отличный диэлектрик, поэтому по нему электрический заряд не передается. Стоит его довести до состояния плазмы, как ситуация кардинально меняется, ведь по ней заряд передается вполне эффективно.

Также плазму от газов отличает однородность частиц. Для газов характерно, что в их структуре присутствуют подобные друг к другу составляющие. Они постоянно двигаются и взаимодействуют между собой на сравнительно небольшом расстоянии. В случае же с плазмой в ней есть как минимум 2-3, а то и больше вида частиц. В ее составе наблюдаются электроны, ионы и нейтральные частицы. Их свойства отличаются между собой. У них может быть разная скорость или температура. Именно по этой причине для плазмы характерна неустойчивость и сложность управления, поскольку многие ее составляющие действуют отличительно от прочих.

Где применяется плазма

В последнее время появилось довольно много приборов, устройство которых предусматривает работу где применяется плазма. Впервые ионизированные газы начали использоваться при создании светотехники. Ярким тому примером станут газоразрядные лампы. Принцип действия таких лампочек заключается в передаче электрического тока через газ заключенный в колбе. В результате наблюдается ионизация с получением ультрафиолетового излучения. Последнее поглощается люминофором, что и вызывает его свечение в видимом для человеческого глаза диапазоне.

Особо востребованной технологией является плазменная резка. Таким оборудованием создается разогретая струя, способная плавить металлы и практически все вещества, встречаемые на ее пути. Обычно такое оборудование превращает в ионизированный газ обыкновенную воду. Сначала она испаряется, после чего под воздействием электрического тока из нее формируется плазменный пучок.

Принцип плазмы может применяться для осуществления передачи данных на расстояние. В связи с этим проводится активная разработка плазменных антенн. Данная идея запатентована еще в 1919 году, но так и не была полноценно применена вплоть до начало XXI века. Технические наработки испытания такого оборудования дают основание полагать, что эта технология придет на замену привычного для всех wi-fi соединения. Она обладает большей скоростью передачи данных, а также возможностью действия в большом радиусе. Проводимость плазмы превышает проводимость серебра, которое является одним из лучших твердых веществ для передачи зарядов.

Также в промышленности началось внедрение технологии напыления расплавленного материала под воздействием плазменной струи. Металл, или другой материал, расплавляется, после чего подается на струю в плазму. В результате он распыляется, дополняя струю. После этого взаимодействия с плазмой прекращается, и материал оседает на требуемых поверхностях в виде тонкого покрытия. Этот метод позволяет провести обработку гораздо быстрее, чем в случае с электрохимическим методом.

Применение плазмы в научном проекте Токамак

Всемирно известный научный проект Токамак, являющийся сокращением полного названия тороидальная камера с магнитными катушками – это установка для магнитного удержания плазмы. Она разработана с целью поддержания условий для проведения управляемого термоядерного синтеза. Впервые эта установка была построена в 1954 году, после успеха проведенных испытаний, в мире было создано более 200 ее копий, где осуществляются исследования и сегодня.

Особенность данного проекта заключается в обеспечении контроля ионизированного газа. В Токамаке плазма удерживается с помощью магнитного поля. Такой способ применяется, поскольку создать ограждение стенками для предотвращения утечки плазмы невозможно. Любое вещество при контакте с ней расплавляется. Чтобы магнитное поле могло подействовать ионизирующий газ, через него пропускают электрический ток. Он обеспечивает создание электрического поля. Также прохождение тока активизирует набор высокой температуры.

Исследование плазмы, позволят реализовать идею контролируемого термоядерного синтеза. Как следствие удастся создать высокоэффективные электростанции, работающие значительно безопаснее атомных, и не создающих вредного выброса в атмосферу.

Похожие темы:
  • Сверхпроводящие магниты. Устройство и работа. Применение
  • Атмосферное электричество. Виды и особенности. Явления
  • Источник: electrosam.ru

Ссылка на основную публикацию
Похожие публикации